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Smoothing Data with Fourier Transformations’

B. A. Kimball?

ABSTRACT

The natural variability of agronomic data often masks
underlying true curves. A relatively new Fourier trans-
form data smoothing technique, when tested on several
sets of noisy agronomic data, gave very satisfactory re-
ductions of this variability. The data were smoothed by
computing the Fourier transform, setting high frequency
noise components of the resulting variance spectrum to
zero, and then computing the inverse Fourier transform.
The key to the technique’s success lies in the fact that
the data were dominated by relatively low frequencies of
variation which could be separated from the higher fre-
quency noise. This simple, lucid interpretation of the
filtering action makes Fourier transform smoothing even
more attractive than other methods whose filtering action
is not so intuitively obvious. The technique was superior
to two other methods in extracting a true curve from
noisy artificial data.

Additional index words: Curve fitting, Digital filtering,
Digital smoothing, Spectral analysis, Power spectrum,

Variance spectrum,

THE environmental factors or parameters that af-
fect plant growth possess much natural varia-
bility, and the evaluation of such parameters involves
significant sampling and/or measurement errors. For
many of these parameters, agronomists are able to
utilize standard statistical methods of data analysis
to deduce reliable estimates of the true parameter
values. However, some of the parameters are sampled
as time series, a class of data whose analysis has receiv-
ed relatively less attention in agronomic literature.
A time series is a set of observations of some para-
meter, usually taken at equal intervals of time. The
usual method for obtaining estimates of the true
values of the parameters has been to smooth the data
by computing weighted running averages of the orig-
inal observations. Recently Hayes et al. (1973) pub-
lished a smoothing technique based on the Fourier
transform which they found would smooth electro-
analytical data well. The purpose of this paper is to
illustrate the use of this technique for smoothing sev-
eral agronomic variables and to suggest that it is an
attractive alternative to running averages and other

methods.

THEORY OF FOURIER TRANSFORMS
AND SPECTRAL ANALYSIS
The Fourier transform of a set of data points, X (t,), is de-
fined by the equation
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where: % = variable under study
t = time
t, = kth time = kAt (the first time is defined as ty)
X (ty) = value of x at the kth time
N — total number of observation points
At = time interval between data points
f, = nth frequency = n/7T
T = total time period = NAt
R (f,) = real part of Fourier coefficient for nth fre-
quency
I(f,) = imaginary part of Fourier coefficient for nth
frequency
i (=12

This transform has often been used in the statistical technique
known as spectral analysis because

s =2 { B N2+ }
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where s(f,) is the value of the spectral density function corre-
sponding to the nth frequency. Spectral analysis is used to
evaluate the contributions of different frequencies of fluctua-
tions to the total variance of an entity, such as air pressure
(Kimball and Lemon, 1970), which changes with time. A graph
of s(f) plotted against frequency is known as a variance spec-
trum or power spectrum. The area under the curve equals the
total variance, and the height of any portion of the curve illus-
trates the contribution of that corresponding frequency band
to the variance. For example, Fig. 1A shows the diurnal varia-
tion of the gravimetric soil moisture content for the 0 to 5 mm
layer of bare Avondale clay loam (formerly Adelanto loam) 7

" days after irrigation (Jackson, 1978), and Fig. 1C is its variance
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Tig. 1. Illustration of the steps ifvolved with Fourier transform
smoothing: A - B translation-rotation, B -5 C Fourier
transform, C — D removal of noise portion of spectrum,
D —» E inverse Fourier transform, E .5 F inverse translation-
rotation. [Water content data from Jackson (1973)1.
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spectrum.  Since the spectral density in Fig. 1C becomes very
small for frequencies greater than 0.1875 cycle/hour (=1 cycle/
5.883 hour), most of the variance in moisture content was caused
by frequencies lower than 0.1875. More information about spec-
tral analysis can be found in Blackman and Tuckey (1958),
Panofsky and Brier (1958), Lumley and Panofsky (1964), Jenkens
and Watts (1968), and Kimball (1969, 1970).

The complement of Equation 1 is the inverse Fourier trans-
form defined by

n=4N/2
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Using Equation [3], the original data are restored by an inverse
Fourier transform of the real and imaginary Fourier coefficients
calculated from Equation [1].

Fourier transforms can be computed using programs based
directly on Equations {17 and [3]. However, this procedure is
slow because there are so many complex multiplications and
additions. Cooley and Tukey (1965) have presented a new al-
gorithm for the fast computation of Fourier transforms. Their
algorithm, known as the FFT (fast Fourier transform), has had
wide application in communications engineering, More informa-
tion may be obtained in the June 1967 issue of IEEE Transac-
tions on Audio and’ Electroacoustics, Vol. 13, No. 2, which was
devoted entirely to the FFT and how it relates to spectral an-
alysis and other subjects. An easily understood description of
the FFT is given by Brigham and Morrow (1967). Following
their outline, the author has programmed the fast Fourier trans-
form in BASIC programming language.

The fast Fourier transform algorithm owes its speed to a
dramatic reduction in the required number of multiplications
by factorization of a weighting matrix. The factorization is
possible only when the number of data points is chosen to be
a power of two, but this restriction is not serious because the
user can simply add zeros at the end of his data set until the num-
ber of data points plus zeros equals a power of two. The N in
Equation [1] becomes this total. The procedure is valid because
the addition of zeros does not change the variance of the data set,

The key to the smoothing of data by the method of Fourier
transformations involves manipulating the variance spectrum
prior to computing an inverse transform. For many cases of
agronomic data, the variance spectrum can be broken into two
parts. In Fig. 1C, the portion to the left of the arrow repre-
sents the very important low frequency components. The por-
tion to the right of the arrow has amplitudes so small they are
not visible on the graph, yet this right portion of the graph
represents the rather significant presence of high frequency
noise in the original data. By deliberately setting the R (f;) and
I(£:) equal to zero for all frequencies to the right of the arrow
[a procedure first suggested by Morrison (1968)], and then calcu-
lating the inverse Fourier transform, the smooth data of Fig.
IF were obtained. The frequency designated by the arrow is
the cutoff frequency, f°.

The straightforward application of the transform procedure
outlined above will be unsatisfactory, however, for most agro-
nomic data. As discussed by Hayes et al. (1973), the data must
begin and end with zero or near zero values or spurious peaks
will be introduced. To circumvent this problem, they suggest
a rotation-translation as illustrated in Fig. 1A and 1B, and as
defined by

(4]
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prior to computing the Fourier transform. After setting the
high frequency noise portion of the spectrum equal to zero and
computing the inverse transform, the smooth data can be re-
stored by the inverse of Equation {4] (i.e, change the minus
outside the brackets to a plus).

As discussed by Hayes et al,, however, the translocation-rota-
tion transformation can lead to erroneous results if the data
are significantly inaccurate around the initiation and termina-
tion points, At our laboratory we have obtained satisfactory
results by obtaining and including extra data before and after
the time period of particular interest. Where this vemedy is
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not possible, a weighted average of several initial and of several
terminal points substituted for the initial and terminal points
respectively probably would give satisfactory results,

The steps involved in Fourier wransform smoothing can be
summarized as follows:

1) Rotate-translate using Equation [4], Fig. 1A — 1B;

2) Add zeros if necessary to use the FFT algorithm;

3) Fourier transform using Equation [1], Fig. 1B —» 1C;

4) Set R(f,) and I(f,) = O for f, > f°, Fig. IC — 1ID;

5) Inverse Fourier transform using Equation [3], Fig. 1D —
1E;

6) Inverse rotate-translate using the inverse of Equation [4],
Fig. 1E — 1T,

APPLICATIONS

Some additional examples of Fourier transform
smoothing are shown in Fig. 2 and 3. In Fig. 2 the
output from the load cell of a lysimeter is shown
plotted against time of day along with the curve ob-
tained by the Fourier transform smoothing. Wind
gusts and other factors caused the lysimeter to bounce
somewhat and produce the irregularities in the out-
put. Fourier transform smoothing of the data prior
to taking the differences has proved to be a very satis-
factory method for extracting evaporation rates. In
Fig. 3, the chloride content of the upper 5 mm of
bare Avondale clay loam is shown plotted against
time of day for days 3 and 7 after irrigation [from
Nakayama et al. (1973)]. Fourier transform smooth-
ing produced the smooth curves from the noisy data.

The Fourier transform smoothing technique uti-
lizes one arbitrary parameter, the cutoff frequency,
which must be specified by the user. The particular
value which is appropriate must be high enough so
that none of the components characterizing the data
are lost, but low enough so that as much noise as
possible is removed. Therefore, the proper choice
depends upon prior knowledge or intuition on the
part of the experimenter about the maximum fre-
quency with which it is physically possible for his
system to vary. Although this Fourier transform
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Fig. 2. Fourier transform smoothing of lysimeter data.
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method of smoothing does contain this element of
arbitrariness, it is present in no greater degree than
with other methods. Indeed, the ability to specify
a definite cutoff frequency with Fourier transform
smoothing lends itself to a more lucid interpretation
of the nature of the filtering action obtained by
smoothing.

The effect of changing the cutoff frequency upon
the smoothing of water content data is illustrated
in Fig. 4. In Fig. 4A the jagged curves are the same
water content data as in Fig. 1A replotted three times
with the ordinate shifted 0.02 units between each re-
plot. The arrows in Fig. 4B show the cutoff frequency
used for each of three computer runs, and the smooth
curves superimposed on Fig. 4A are the smoothed
data computed using the respective cutoff frequencies.
The upper two curves both follow the actual data
very well and would probably give satisfactory re-
sults. The major difference occurs in the shape of
the peak at 0600 hours, the curve for f° = 0.34375
cycle/hour being flatter. The curve for f° = 0.09875
does not follow the data adequately. This is not
surprising because the arrow in Fig. 4B shows that
significant components from the shoulder of the peak
in the variance spectrum were cut off.

The ability of Fourier transform smoothing to
extract a true curve from noisy data was assessed as
follows. Data points were computed. for t = .5, 1,
1.5, 2... 24 from the equation

W = 0.09 4 (—0.02/24)¢ 4 0.03 sin (2xt/24) [5]

which somewhat simulates the water content near the
surface of bare Avondale clay loam several days after
irrigation. The equation describes a sine wave of
period 24 hours with an amplitude of 0.03 g/g super-
imposed on a linear drying trend of 0.02 g/g per 24
hours. Then five sets of normally distributed “noise”
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Fig. 3. Fourier transform smoothing of chloride salinity data.
[Data from Nakayama et al. (1973)1.

of standard deviation approximately 0.005 g/g was
generated using a random number generator and a dis-
cretized normal distribution curve. The five sets of
noise were added to the “true” data points and the re-
sulting noisy curves were smoothed using the Fourier
transform smoothing technique as well as others.
Figure 5 illustrates the results obtained from the
first set of generated data for f° = 0.1875. The dashed
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Fig. 4. Effect of three cutoff frequencies on the Fourier trans-
form smoothing of soil water content data. [Data from Jack-
son (1973)].
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Fig. 5. Illustration of the ability of Fourier transform smoothing
to extract approximately the true curve from noisy artificial
data. The true curve is actually a simulation of surface soil
moisture content with a sine wave superimposed on a linear
drying trend. The raw artificial data were generated by
adding normally distributed noise to the data points of the
true curve,
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Table 1. Standard deviations of five sets of generated water
contents and the reductions due to three methods of smooth-
ing.

Standard Deviation, g/g

4,2,3,2,1
Welghted Pourier transform
Data running Parabolic o o
set Raw average splines™ = 1875 =.125
1 . 0046 L0019 L0013 L0011 L0012
2 L0064 . 0024 L0017 L0017 . 0016
3 . 0058 L0024 L0017 . 0017 L0015
4 . 0049 L0022 . 0025 . 0020 L0019
5 L0044 .o21 L0020 L0016 L0014
Average reduction, % 57.8 64, 2 68. 8 70. 4

* From DuChateau et al, (1972),

curve obtained by Fourier transform smoothing of the
“raw” data points approximates the solid “true” curve,
Equation [5], well. The ability of Fourier trans-
form smoothing and other smoothing techniques to
reduce the standard deviation of the five generated
water content data sets is shown in Table 1. Here the
standard deviation was computed as the square root of
the sum of the differences between estimated value
and the true values from Equation [5]. Smoothing
by the Fourier transform method reduced the stan-
dard deviation by an average of about 709, from the
original standard deviation of the raw data for both
cutoff frequencies used. The more familiar 1, 2, 3,
2, 1 weighted running average technique [eg. as used
by Jackson (1973)] only achieved a reduction of 589,
The results obtained by the parabolic splines tech-
nique presented by DuChateau et al. (1972) were inter-
mediate with an average reduction of 649.

Obviously for this artificial data, the Fourier trans-
form was superior, but all three methods achieved
large reductions in the amount of scatter and all would
be satisfactory for many cases. The simplicity of the
weighted running average makes it attractive to users
with limited computing facilities. The parabolic
splines technique (DuChateau et al, (1972) has the
advantage that it can be used with unequal intervals,
and also that interpolations of function values or slopes
can be made from quadratic functions rather than con-
nection lines between discrete points (although run-
ning quadratics could be fitted to the smoothed points
of the other methods too, if desired).

The choice of method also depends upon what is
known about the variable to be smoothed. The arti-
ficial data used here was generated by the use of a
function which had a frequency of 1/24 hours and
consequently, removing noise due to frequencies higher
than 1/8 hours (= 0.125 cycle/hour) had to improve
the situation. On the other hand, if some variable
is known to change both rapidly and slowly, such
as X112 in the example used by DuChateau. et al.
(1972), then both low and high frequency components
are needed to describe the function, and the highs

should not be removed. Therefore, for such data the
parabolic splines function can be expected to give more
satisfactory results. However, it appears that many
things in nature which command the attention of
agronomists (three examples are presented here) are
dominated by relatively slow changes, and frequent
sampling coupled with Fourier transform smooth-
ing will produce very satisfactory results. Moreover,
the simple interpretation of the Fourier transform
smoothing filter — that it is a simple separation of
high from low frequencies of variation — makes
Fourier transform smoothing an attractive alterna-
tive to the other methods whose filtering action is
not so intuitively obvious.
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